

Phototransformation of $16\alpha,17\alpha$ -epoxy- 3β -hydroxypregn-5-ene-20-one to 3β -hydroxypregn-5-ene-16,20-dione

N Kumar Girdhar^a, Abdul Faruk^a, K Avtar Suri^b & M P S Ishar ^{*a}

^aDepartment of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143 005, India

^bRegional Research Laboratory, Canal Road, Jammu 180 001, India

E-mail: mpsishar@yahoo.com

Received 7 December 2005; accepted (revised) 7 August 2006

UV irradiation of $16\alpha,17\alpha$ -epoxy- 3β -hydroxypregn-5-ene-20-one **5** in a variety of solvents (benzene, acetonitrile, methanol), as such and in the presence of triethylamine, in a pyrex glass reactor leads to the formation of 3β -hydroxypregn-5-ene-16,20-dione **6** as the major product.

Keywords: Steroids, photochemistry, α -epoxyketone, phototransformation, β -diketone

IPC: Int.Cl.⁸ C07C

Photochemistry of α -epoxy-ketone chromophores has been investigated in a variety of molecular environments and has been reported to yield 1,3-diketones as the predominant photoproduct¹⁻³. The phototransformation has been reported to involve cleavage of C α -O epoxide bond leading to intermediate **A** (**Scheme I**).

In case of steroidal epoxide **3**, Jeger *et al.*⁴, were first to report a unique phototransformation leading to A-nor-B-homo-1,3-diketone **4** (**Scheme II**).

Subsequently, photo-transformations of a number of steroidal ring A and ring B α -epoxyketones have been investigated by Pete and Viriot-Villaume^{5,6}, who have reported isolation of a number of products under varied conditions of irradiation, derived from a similar generalized mechanistic pattern involving intermediates corresponding to **A**. However, through investigations on well-designed steroidal-epoxide system Schaffner⁷ has shown that the temperature of phototransformation influences the product and stereochemical outcome. Interestingly, to the best of the present knowledge, photochemical transformation of steroidal-ring-D epoxides has not been explored. As a part of the ongoing investigations on transformations of $16\alpha,17\alpha$ -epoxy- 3β -hydroxy- Δ^5 -pregnen-20-one **5** (Ref. 8,9), its phototransformation has been investigated under varied conditions.

A solution of epoxide **5** in dry acetonitrile was irradiated in a pyrex glass reactor with a 125 W

medium pressure Hg arc for 11 hr. The photolysate was concentrated by distilling out the solvent under reduced pressure. Resolution of the crude product by column chromatography over silica gel (60-120 mesh) afforded a gummy, light yellow, homogenous material (TLC) characterized as diketone **6** (**Scheme III**).

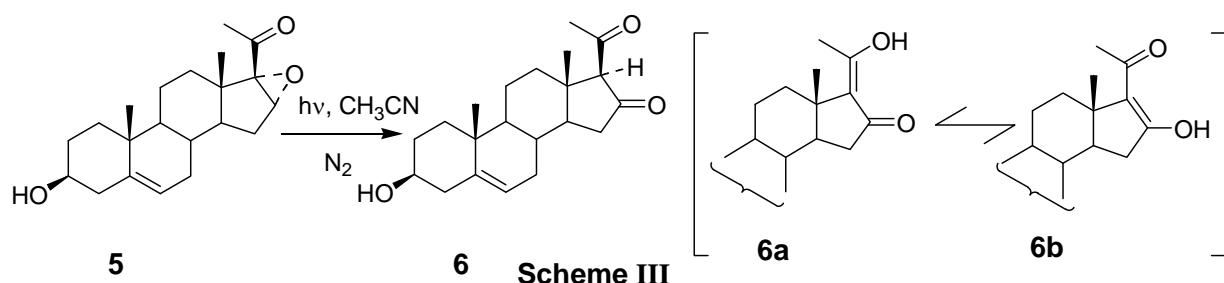
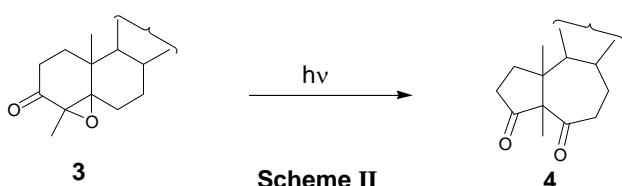
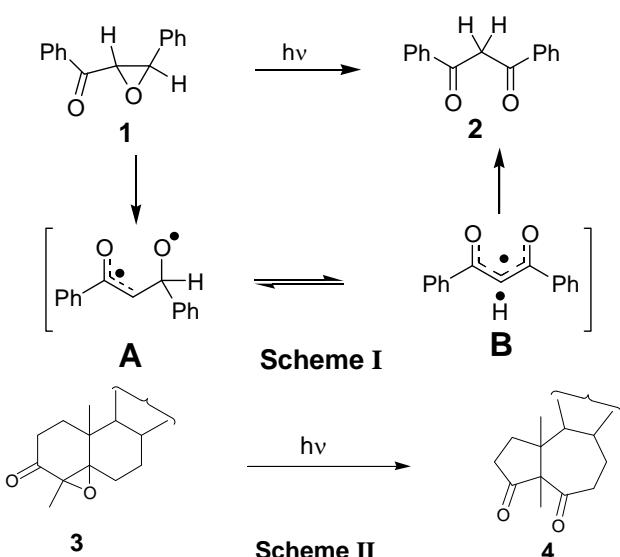
Compound **6** has been characterized on the basis of detailed analysis of its spectroscopic data. It revealed M⁺ at *m/z* 330 indicating no loss or gain of mass during phototransformations. Its IR spectrum revealed two carbonyl bands at 1707 and 1740 cm⁻¹; the latter band was characteristic of a cyclopentanone. Its ¹H NMR revealed, besides resonances attributable to C6-H (broad doublet at δ 5.37) and C3-H (m at δ 3.54), a 1H singlet at δ 4.40 (C17-H). The upfield part of the spectrum revealed, amidst characteristic steroidal proton envelope, methyl resonances at δ 2.03, 1.04 and 0.94. Though the compound was homogeneous on TLC, its ¹H NMR showed additional sharp singlets (methyl) at δ 1.98 and 0.98 as well as additional resonances (minor) in the ¹³C NMR spectrum. Of particular significance, in its ¹³C NMR, besides carbonyl carbons (C20, C16) and olefinic carbons (C5, C6) resonances, were the downfield shifted olefinic resonances at δ 177.0, 166.5 and upfield shifted olefinic resonances at δ 110.0 and 100.56; the latter were indicative of existence of tautomeric structures such as **6a** and **6b**. Existence of tautomeric

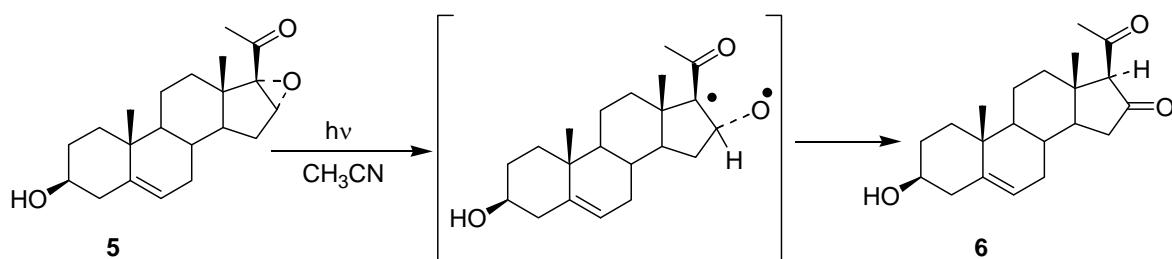
structures is also corroborated by additional resonances (minor) in the ^{13}C NMR spectrum and additional singlets (methyl) in the upfield part of the ^1H NMR spectrum.

Irradiation of epoxy-ketone was also carried out in different solvents and in the presence of triethylamine; the results are summarized in **Table I**. It may be mentioned here that irradiation of **6** in methanol furnished a complex mixture and ^1H NMR screening of various column chromatography fractions indicated the formation of some methanol addition products. However, these could not be resolved sufficiently for characterization. Presence of triethylamine was anticipated to influence the mode of phototransformation through electron transfer¹⁰⁻¹³ and also by stabilizing incipient ketyl radical¹⁴. However, no such effect of triethylamine on phototransformation has been observed, except, when irradiation is carried out in acetonitrile wherein there is observed considerable reduction in irradiation time along with slightly improved yield of the product **6**; acetonitrile as solvent is anticipated to facilitate photoelectron transfer.

Mechanistically, the phototransformation of epoxy-ketones to β -diketone is well investigated¹⁻³ and exis-

tence of tautomeric structures has been established earlier. The plausible mechanism of present phototransformation is described in **Scheme IV**.




Thus, phototransformation of **5** under a variety of irradiation conditions (solvent, presence of triethylamine, *etc.*) leads to β -diketone **6** as the major product and no deviation is observed from known preferred mode of phototransformation of α -epoxy ketones. However, highest yield of **6** is obtained in acetonitrile as solvent in the presence of triethylamine.


Experimental Section

^1H and ^{13}C NMR spectra were recorded on Bruker AC-200 FT NMR spectrometer, using TMS as internal standard and $\text{CDCl}_3/\text{acetone}-d_6$ as solvent. Chemical shift values are expressed as δ (ppm) downfield from TMS and J values are in Hz. IR spectra were recorded on Shimadzu DR 2001 FT-IR spectrometer in CHCl_3 , and mass spectra were recorded on Shimadzu GCMS-QP-2000A spectrometer. Column chromatography was conducted using Silica Gel 60-120 mesh. The elemental analyses were performed on Perkin-Elmer 240C Elemental Analyzer. Products were resolved by column chromatography over silica gel (60-120 or 100-200 mesh). All solvents were purified and dried prior to use. $16\alpha,17\alpha$ -Epoxy- 3β -hydroxy/acetoxypregn-5-en-20-ones **5** was prepared by the literature method and characterized spectroscopically¹⁵.

General procedure for irradiation of $16\alpha,17\alpha$ -epoxy- 3β -hydroxy-pregn-5-ene-20-one, **5**

Epoxide (**5**, 200 mg) was dissolved in a dry solvent (acetonitrile/benzene/methanol, 200 mL) and the solution was taken in an immersion well type water-cooled Pyrex glass reactor; for irradiations carried out in the presence of triethylamine (acetonitrile/methanol solvents), 0.5 mL of the same was added to the solution. The solutions were purged with dry oxygen free nitrogen gas for 15 min prior to irradiation and it was continuously bubbled through the solution during

Scheme IV

Table I — Reaction conditions and product yields for irradiation of **5** in different solvents

S. No.	Reaction Conditions	Reaction Time hr	% Yield of 6
1	Benzene	16	44
2	CH ₃ CN	11	56
3	CH ₃ CN/TEA	3	60
4	MeOH	12	42
5	MeOH/TEA	8	47

irradiation. The irradiation was carried out with a 125 W medium mercury arc placed coaxially and the progress of the reaction was monitored by TLC. After completion of reaction the solvent(s) from the photolysate(s) were removed under reduced pressure and the crude products were subjected to column chromatography over silica gel (60-120 mesh, column packed in hexane) employing hexane-ethyl acetate gradient as eluent. Compound **6** was obtained as colorless intractable gummy material with hexane-ethyl acetate 5:1 eluent: some mixture fractions obtained from columns in certain cases could not be resolved further.

6: Colorless gummy material; IR (KBr): 3300, 3000, 1740, 1720, 1600, 1520, 1420, 1390, 1370, 1200, 1040, 920 cm⁻¹; ¹H NMR (acetone-*d*₆): δ 5.37(br d, 1H), 4.40(s, 1H), 3.54(m, 1H), 2.80-0.86 (complex, 26H, with singlets at δ 2.25, 2.22, 1.04,

0.96 and 0.90); ¹³C NMR (acetone-*d*₆): δ 205.1, 201.4, 177.0, 165.5, 148.3, 146.2, 125.8, 125.6, 110.0, 100.6, 76.1, 75.8, 58.8, 56.2, 53.9, 52.7, 50.5, 47.4, 47.1, 41.9, 41.7, 41.6, 41.2, 39.8, 39.0, 37.0, 36.5, 36.1, 35.6, 35.3-34.4 (solvent), 31.3, 30.9, 30.5, 29.4, 27.3, 25.9, 25.2, 24.4, 17.33, 16.6, 14.3, 12.9; MS: *m/z* (%) 332(M⁺+2, 2.5), 331(M⁺+1), 330 (M⁺ 15), 329 (M⁺-1, 35); Anal. Calcd. for C₂₁H₃₀O₃: C, 76.33; H, 9.15. Found: C, 76.19; H, 9.02%.

References

- 1 Muzart J & Pete J P, *Tetrahedron Lett*, **1974**, 3419.
- 2 Badfross S, *Chem Ber*, **51**, **1918**, 214.
- 3 Hallet P, Muzart J & Pete J P, *J Org Chem*, **46**, **1981**, 4275.
- 4 Debano M, Molloy R M, Baua D, Itzuka T, Schaffner K & Jeger O, *J Am Chem Soc*, **92**, **1970**, 420.
- 5 Pete J P & Viriot-Villaume M L, *Bull Soc Chim Fr*, **1971**, 3709.
- 6 Pete J P & Viriot-Villaume M L, *Bull Soc Chim Fr*, **1971**, 3699.
- 7 Schaffner K, *Angew Chem Int Ed*, **10**, **1971**, 201.
- 8 Girdhar N K & Ishar M P S, *J Chem Soc Chem Commun*, **2002**, 2102.
- 9 Girdhar N K, Ishar M P S, Singh R, Singh G & Kumar K, *Tetrahedron*, **57**, **2001**, 7199.
- 10 Guttenplan J B & Cohen S G, *J Chem Soc Chem Commun*, **1969**, 247.
- 11 Cohen S G & Litt A D, *Tetrahedron Lett*, **1970**, 837.
- 12 Cohen S G, Parola A & Parsons G H Jr, *Chem Rev*, **73**, **1973**, 141.
- 13 Wu Z-Z, Hug G L & Morrison H, *J Am Chem Soc*, **114**, **1992**, 1812 and references cited therein.
- 14 Singh R & Ishar M P S, *Tetrahedron* **58**, **2002**, 7595 and references cited therein.
- 15 Julian P L, Meyer E W, Karpel W J & Waller I R, *J Am Chem Soc*, **72**, **1950**, 5145.